
Directory Structure and File Allocation Methods
Mandeep Kaur, Sofia Singh, Rupinder Kaur

Assistant Professor,
PG Department of Computer Science and Applications,

GHG Khalsa College Gurusar Sadhar, Ludhiana, Punjab, India

Abstract: Today computer is an integral part of human life.
The storage of large amount of data permanently in computer
system files is used. In this research paper we discuss the file
that is a collection of records or information stored on
secondary storage such as hard disk. In computing a file
system is used to control how data is stored and retrieved.
File system control the files starting and ending locations. The
information present in the file can be accessed using access
methods. In file any time data is failure with hardware
problem for solution file system provide protection with access
privileges of users. In files secondary storage space is allocated
using file allocation methods. These allocated space in such a
manner so that disk space is utilized effectively and files can
be accessed quickly. Directory structure is use symbol table of
files that stores all the related information about the file it
holds with the contents.

Keywords: File System, File Protection, File Access Methods,
File Allocation Methods, Directory Structure.

I. INTRODUCTION
File is a logical collection of information stored on
secondary storage such as hard disk. It is a collection of
records. Physically, a file is smallest allotment of secondary
storage device for example disk. Logically, a file is a
sequence of logical records such as a sequence of bits and
bytes. Files can be used to contain the data and programs
(both source and object programs). Data files can be
numeric, alphabetic, alphanumeric or binary. A file has
various attributes like name, type, location, size, protection,
time and date of creation etc. Computers can store
information in several physical forms, depending on which
storage device is used. Disks and drums though are the
most common devices for this purpose. Since each device
has its own characteristics and physical organization,
information may be stored in several ways and therefore
different views of information are created. To unify all
these views of information in the system, a uniform logical
view of it was created. This logical view is called a file. It
is the job of the OS to map this sequence of words into
physical devices. The part of the OS responsible for this is
the file system. It is clear that the main objective of the file
systems is to free the users of the details of storing the
information in the physical devices. That is, when the
storage device is changed, from disk to drum for example,
the user still sees the same information as before the change.
If this is allowed in the system, then we can say that the file
system is device dependent.

II. FILE SYSTEM

In computing a file system is used to control how data is
stored and retrieved. Without a file system, information

placed in a storage area would be one large body of data
with no way to tell where one piece of information stops
and the next begins. By separating the data into individual
pieces, and giving each piece a name, the information is
easily separated and identified. Taking its name from the
way paper-based information systems are named, each
group of data is called a "file". The structure and logic rules
used to manage the groups of information and their name is
called a "file system". There are many different kinds of
file systems. Each one has different structure and logic,
properties of speed, flexibility, security, size and more. File
systems can be used on many different kinds of storage
devices. Each storage device uses a different kind of media.
The most common storage device in use today is hard
device whose media is a disc that has been coated with a
magnetic film. The film has ones and zeros 'written' on it
sending electrical pulses to a magnetic "read-write" head.
Other media that are used are magnetic tape, optical disc
and flash memory. The file system manages access to both
the content of files and the metadata about those files. It is
responsible for arranging storage space; reliability,
efficiency, and tuning with regard to the physical storage
medium are important design considerations.

III. ACCESS METHODS OF FILE

Files are used to store data. The information present in the
file can be accessed by various methods. Thus, the way of
retrieving data from a file is known as access methods.
Different systems use different access methods. The
various access methods used are:

1. Sequential access
2. Direct access
3. Indexed access

1. Sequential access:- It is the simplest and most
commonly used access method. In this information in
the file is accessed in the order it is stored in the file
one record after the other. The various records are read
sequentially one after the other in an order, starting at
the beginning to the end of the file. The various
records cannot be read randomly out of order we can
not skip any record in between. For example reading of
34 record followed by 5 record and then 1 record is not
possible in sequential access. A read operation reads
the next portion of the file and automatically advances
the file pointer. Similarly, a write appends to the end of
the file and the file pointer. Similarly, a write appends
to the end of the file and the file pointer. Similarly, a
write appends to the end of the end of the file and
advances to the end of the newly written material (the
new end of file). Such a file can be reset to the

ISSN:0975-9646
Mandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 577-582

www.ijcsit.com 577

beginning, and, on some systems, a program may be
able to skip forward or backward n records, for some
integer n. This scheme is known as sequential access to
a file. Sequential access is based on a tape model of a
file. Sequential access is convenient when the storage
medium is magnetic tape, rather then a disk.

2. Direct Access:- In direct access method it is possible
to access the records of a file in any order. For
example, if we are reading block 13, we can read block
46 after this and then block 20. Various records are
read or write randomly. Direct access is based on a
disk model of a file. For direct access, the file is
viewed as a numbered sequence of block or records. A
direct-access file allows arbitrary blocks to be read or
written. Thus, after block 18 has been read, block 57
could be next, and then block 3. There are no
restrictions on the order of reading and writing for a
direct access file. Direct access files are of great use
for intermediate access to large amounts of information.
The file operations must be modified to include the
block number as a parameter. Thus, we have "read n",
where n is the block number, rather than "read next",
and "write n", rather that "write next". An alternative
approach is to retain "read next" and "write next" and
to add an operation; "position file to n" where n is the
block number. Then, to effect a "read n", we would
issue the commands "position to n" and then "read
next". Not all OS support both sequential and direct
access for files. Some systems allow only sequential
file access; others allow only direct access. Some
systems require that a file be defined as sequential or
direct when it is created; such a file can be accessed
only in a manner consistent with its declaration. Direct
access method is important for many applications, for
example database system.

3. Indexed Access:-In this method, an index is created
for the file. This index contains pointer for various
blocks of a file, just like an index in the back of the
book. If we want to find a record of a file, first the
index is searched and then the pointer from index is
used to access that file. In this way, a required record is
found. This access method is a slight modification of
the direct access method. It is in fact a combination of
both the sequential access as well as direct access. The
main concept is to access a file direct first and then
sequentially from that point onwards. This access
method involves maintaining an index. The index is a
pointer to a block. To access a record in a file, a direct
access of the index is made. The information obtained
from this access is used to access the file. For example,
the direct access to a file will give the block address
and within the block the record is accessed
sequentially. Sometimes indexes may be big. So
hierarchies of indexes are built in which one direct
access of an index leads to info to access another index
directly and so on till the actual file is accessed
sequentially for the particular record. The main
advantage in this type of access is that both direct and
sequential access of files is possible.

IV. DIRECTORY STRUCTURE
Directory is a symbol table of files that stores all the related
information about the file it hold with the contents.
Directory is a list of files. Each entry of a directory define a
file information like a file name, type, its version number,
size ,owner of file, access rights, date of creation and date
of last backup.
LOGICAL STRUCTURE OF DIRECTORY
The directories can be structured in the following ways:-

1. Single level directory
2. Two level directory
3. Tree structured directory
4. Acyclic graph directory
5. General graph directory

l. Single level directory: In a single level directory system,
all the files are placed in one directory. This is very
common on single-user OS's. A single-level directory has
significant limitations, however, when the number of files
increases or when there is more than one user. Since all
files are in the same directory, they must have unique
names. If there are two users who call their data file "test",
then the unique-name rule is violated. Although file names
are generally selected to reflect the content of the file, they
are often quite limited in length. Even with a single-user, as
the number of files increases, it becomes difficult to
remember the names of all the files in order to create only
files with unique names shown in Fig1.

Fig1
2. Two level directory: In the two-level directory system,
the system maintains a master block that has one entry for
each user. This master block contains the addresses of the
directory of the users. There are still problems with two-
level directory structure. This structure effectively isolates
one user from another. This is an advantage when the users
are completely independent, but a disadvantage when the
users want to cooperate on some task and access files of
other users. Some systems simply do not allow local files to
be accessed by other users shown in Fig 2.

Fig 2

Directory

Sub Dir1 Sub Dir3 Sub Dir2

F F F F F F F F F

Director

F F F F F F

Mandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 577-582

www.ijcsit.com 578

3. Tree structured directory: In the tree-structured
directory, the directory themselves are files. This leads to
the possibility of having sub-directories that can contain
files and sub-subdirectories. An interesting policy decision
in a tree-structured directory structure is how to handle the
deletion of a directory. If a directory is empty, its entry in
its containing directory can simply be deleted. However,
suppose the directory to be deleted id not empty, but
contains several files, or possibly sub-directories. Some
systems will not delete a directory unless it is empty. Thus,
to delete a directory, someone must first delete all the files
in that directory. If these are any sub-directories, this
procedure must be applied recursively to them, so that they
can be deleted also. This approach may result in a
insubstantial amount of work shown in fig 3

Fig. 3

4. Acyclic graph directory: The acyclic directory
structure is an extension of the tree-structured directory
structure. In the tree-structured directory, files and
directories starting from some fixed directory are owned by
one particular user. In the acyclic structure, this prohibition
is taken out and thus a directory or file under directory can
be owned by several users shown in fig 4.

Fig 4

5. General graph directory: The general graph directory
is formed by adding links into an existing tree structure. It
overcomes the problem of acyclic graph by allows the
cycles in a directory. Thus it avoids the searching of a
component twice in a subdirectory in fig 5.

Fig 5

V. FILE PROTECTION

Files often contain information that is highly valuable to
their users. One of the major functions of the file system is
to protect this information against unauthorized access and
physical damage. Physical damage may occur because of
hardware problems, power failure, head crashes, dirt and
extreme temperatures. In order to prevent such damage
some systems performs backup at regular intervals.
Protection is achieved by limiting the type of file access
which can be made. Access is permitted or denied
depending upon several factors, one of which is the type of
access requested. Several operations on files can be
controlled. Some of these are:

 read - read a file
 write - write a file
 execute - load and execute a file
 append - append information at the end

of a file
 delete - free the space allocated to a file
 update – modifying, deleting and adding

to a file
 copy- copy the contents of a file
 list- listing the name of the file

The most common implementation of the file systems
allow the owners of the file to do operations 1-5, whereas
other users can only invoke those operations that do not
modify the file, e.g., file read. However, in some systems,
e.g., UNIX, the user can change the access control of a file
such that he can let anybody access (modification allowed)
the file or he can completely deny any user (including
himself) access to a file. Files use different access rights
such as:
1. Access Control:- It is the most common approach to
protect the files and directories depending upon the identify
of the users. Access control limits who can access files and
how they can access them. Users and group of users are
granted certain access rights to a file. An access list is
associated to each file or directory. The access list contains
information on the type of users and accesses that they can
do on a directory or file. An example is the following
access list associated to a UNIX file or directory:
drwxrwxrwx
The d indicates that this is an access list for a directory, the
first rwx indicates that it can be read, written, and executed
by the owner of the file, the second rwx is an access

Directory

Sub Dir1 Sub Dir3 Sub Dir2

F FF F FF F…

F
…

F

F FFF

F

F
F

FFF

F

Mandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 577-582

www.ijcsit.com 579

information for users belonging to the same group as the
owner (somewhere on the system is a list of users
belonging to same group as the owner), and the last rwx for
all other users. The rwx can be changed to just r--
indicating that it can only be read, or -w- for write-only, --x
for execute only.
2. Password Protection:- Another approach to protect a
file from an unauthorized access is to use a password with
each file. This scheme associates a password to each file. If
a user does not know the password associated to a file then
he cannot access it. This is a very effective way of
protecting files but for a user who owns many files, and
constantly changes the password to make sure that nobody
accesses these files will require that users have
photographic memories.
3. File Naming:- This depends upon the inability of a user
to access a file he cannot name. This can be implemented
by allowing only users to see the files they have created.
But since most file systems allow only a limited number of
characters for filenames, there is no guarantee that two
users will not use the same filenames. A name is attached
to every file so as to uniquely identify it and access it
through its name. The exact rules for naming file vary from
system but all the operating systems allow string of one to
eight letters as legal filename.

VI. ALLOCATION METHODS OF FILE
Allocation refers to the process of assigning secondary
storage space in files. The files should be allocated space in
such a manner so that disk space is utilized effectively and
files can be accessed quickly. The allocation method is
responsible for mapping a file’s logical blocks into the
actual physical blocks on the secondary storage device. In
most operating systems, the size of a physical block is a
power of 2 between 512 and 4096. There are three major
methods of allocating disk space to files:

 1. Contiguous allocation
 2. Linked allocation
 3. Indexed allocation

1. Contiguous Allocation:- The contiguous
allocation method requires each file to occupy a set of
contiguous address on the disk. Disk addresses define a
linear ordering on the disk. Notice that, with this ordering,
accessing block b+1 after block b normally requires no
head movement. When head movement is needed (from the
last sector of one cylinder to the first sector of the next
cylinder), it is only one track. Thus, the number of disk
seeks required for accessing contiguous allocated files in
minimal, as is seek time when a seek is finally needed.
Contiguous allocation of a file is defined by the disk
address and the length of the first block. If the file is n
blocks long, and starts at location b, then it occupies blocks
b, b+1, b+2, …, b+n-1. The directory entry for each file
indicates the address of the starting block and the length of
the area allocated for this file. The difficulty with
contiguous allocation is finding space for a new file. If the
file to be created is n blocks long, then the OS must search
for n free contiguous blocks. First-fit, best-fit, and worst-fit
strategies (as discussed in Chapter 4 on multiple partition
allocation) are the most common strategies used to select a

free hole from the set of available holes. Simulations have
shown that both first-fit and best-fit are better than worst-fit
in terms of both time storage utilization. Neither first-fit nor
best-fit is clearly best in terms of storage utilization, but
first-fit is generally faster. These algorithms also suffer
from external fragmentation. As files are allocated and
deleted, the free disk space is broken into little pieces.
External fragmentation exists when enough total disk space
exists to satisfy a request, but this space not contiguous;
storage is fragmented into a large number of small holes.
The operating system that uses contiguous allocation is
IBM VM/CMS. For example file count starts from 0 and
length is 2 so end is 1, file tr starts from 14 and length is 3
so end is 16, file mail is starts from 19 and end 24, file list
is starts from 28 and ends with 31 and file f is starts from 6
and end with 8.

Contiguous Allocation

Advantages of Contiguous Allocation:
 It is simple to implement because keeping track of

where a file’s blocks are reduced to remembering
only one number.

 Performance is good because entire file can be
read from the disk in a single operation.

 In this scheme, number of disk seeks required for
accessing the file is minimal. Disk addresses
define linear ordering on the disk, accessing block
b+1 after block b requires no head movement. As
a result number of disk seeks required for a file s
are less.

 It is the best from the point of view of the
individual sequential file.

Disadvantages of Contiguous Allocation:
 This method from the problem of external

fragmentation. As files are allocatd and deleted,
the free disk space is broken into little pieces.
External fragmentation exists whenever free space
is broken into chunks. However, compaction be
applied as a solution to this problem, because
compaction of the disk is expensive.

1. Linked Allocation:- The problems in contiguous
allocation can be traced directly to the requirement that the
spaces be allocated contiguously and that the files that need

Mandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 577-582

www.ijcsit.com 580

these spaces are of different sizes. These requirements can
be avoided by using linked allocation. In linked allocation,
each file is a linked list of disk blocks. The directory
contains a pointer to the first and (optionally the last) block
of the file. For example, a file of 5 blocks which starts at
block 9, might continue at block 16, then block 1, block 10
and finally block 25. Each block contains a pointer to the
next block and the last block contains a NIL pointer. The
value -1 may be used for NIL to differentiate it from block
0. With linked allocation, each directory entry has a pointer
to the first disk block of the file. This pointer is initialized
to nil (the end-of-list pointer value) to signify an empty file.
A write to a file removes the first free block and writes to
that block. This new block is then linked to the end of the
file. To read a file, the pointers are just followed from
block to block. There is no external fragmentation with
linked allocation. Any free block can be used to satisfy a
request. Notice also that there is no need to declare the size
of a file when that file is created. A file can continue to
grow as long as there are free blocks. Linked allocation,
does have disadvantages, however. The major problem is
that it is inefficient to support direct-access; it is effective
only for sequential-access files. To find the ith block of a
file, it must start at the beginning of that file and follow the
pointers until the ith block is reached.

Linked Allocation

Advantages of Linked Allocation:
 Unlike contiguous allocation every free disk block can

be utilized.
 It does not suffer from the problem of external

fragmentation.
 There is no need to declare the size of a file at the time

of its creation. A file can grow as long as free blocks
are available.

 There is no need to perform the compaction.
Disadvantages of Linked Allocation:
 Linked allocation can be used effectively only for

sequential files. It is inefficient to support a direct
access. In order to find the ith block of a file, we must
start at the beginning of that file and follow the

pointers until we get to the ith block. Each access to a
pointer disk read and a disk seek.

 Pointer takes up space in each disk block. It consumes
some portion of a block that can be used for storing
information.

2. Indexed Allocation: - The indexed allocation method is
the solution to the problem of both contiguous and linked
allocation. This is done by bringing all the pointers together
into one location called the index block. Of course, the
index block will occupy some space and thus could be
considered as an overhead of the method. In indexed
allocation, each file has its own index block, which is an
array of disk sector of addresses. The ith entry in the index
block points to the ith sector of the file. The directory
contains the address of the index block of a file. To read the
ith sector of the file, the pointer in the ith index block entry
is read to find the desired sector. Indexed allocation
supports direct access, without suffering from external
fragmentation. Any free block anywhere on the disk may
satisfy a request for more space. For example set the index
value is 19 all blocks are linked to that index values
provide the references to all blocks. Index method follow
the direct method using index block.

Indexed Allocation

Advantages of Indexed Allocation:
 It is the most popular from of file allocation and

support both sequential and direct access to the file.
 Any free block on the disk can be used for allocation.
 Allocation of space an the basis of individual block

eliminates external fragmentation.
 Allocation of space on the basis of variable size

portions improves locality.
Disadvantages of Indexed Allocation:
 If the index block is small, it will not be able to hold

enough pointers for a large file.
 The entire index or table will have to be kept in main

memory for all the times to make it work.
 Looking up for an entry in a large index is a time

consuming process.

Mandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 577-582

www.ijcsit.com 581

CONCLUSION
This paper discusses how the Modify-on-Access file
system efficiently extends the capabilities of conventional
file systems. It demonstrates how an active file system can
simplify both applications and system usage by performing
computations on behalf of processes. Furthermore, the
paper describes the structure of files and directories. The
file system is the first component of a suite of system
software designed for a collaborative memory system in
which intelligent peripheral devices collaborate with a host
processor to accomplish tasks. These implementations are
similar to the Active Page and Active Disk simulations
described in related work. This provides an extensible
environment in which a privileged user implements
common, time-critical operations within the kernel and an
unprivileged user safely implements user-defined
operations outside of the kernel.

REFERENCES
Web Links
 https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/11_Fil

eSystemImplementation.html
 https://en.wikipedia.org/wiki/File_system
 http://web.cs.wpi.edu/~cs3013/c07/lectures/Section10-

File_Systems.pdf
 http://www.tutorialspoint.com/operating_system/os_file_system.htm
 http://zerofiles.8k.com/fileaccess.html
 https://en.wikipedia.org/wiki/Access_method
 http://www.tutorialspoint.com/operating_system/os_file_system.htm
 http://www.cse.nd.edu/~ssr/papers/linc99/node16.html
 http://shodhganga.inflibnet.ac.in/bitstream/10603/9868/6/conclusion.

pdf

Books
[1] Principles of Operating Systems: Design & Applications By Brian L.

Stuart
[2] Operating Systems By Sibsankar Haldar, Alex Alagarsamy Aravind

Mandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 577-582

www.ijcsit.com 582

